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Chapters 4.2 Drawing graphs in the plane

Informally, drawing of a graph G in the plane is as-
signment of distinct points to the vertices and curves to
edges such that curves have as endpoints their vertices
and curves intersect only at endpoints. A very formal
definition is in the book, please read it!

A graph G is planar if it is possible to draw it in the plane (without crossings of edges - except their endpoints).

A graph G is plane if it is drawn in the plane (without crossings of edges - except their endpoints).

1: Are the following graphs K2,3, K3,3, K4, and K5 planar graphs?

Solution: K2,3 yes K3,3 no K4 yes K5 no

A face (sometimes called region) in a plane graph G
is a region of the plane that is obtained by removing
the edges (and vertices) of G from the plane. (Imagine
drawing G on a paper and cutting along the edges. The
connected pieces of the paper after the cuttings is done
are called faces.)

2: Mark individual faces in the following plane graph. How many faces does it have?

f0

f1

f2

f3

f4

f5 f6

The unbounded piece is called outer/exterior face/region.

Drawings can be very wild, but there is always a simple one.

Theorem If G is a planar graph, then it has a drawing where all edges correspond to straight line segments.

3: Draw K2,2 and K4 using only straight lines.

Solution: One has to move vertices.
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Theorem - Euler’s Identity Let G be a connected plane graph with v ≥ 1 vertices, e edges and f faces.
Then

v + f = e + 2.

4: Verify that Euler’s identity holds for K2,3, K4 and all trees. Notice that trees are planar graphs.

Solution: We will use drawings of K4 and K2,3 that we already have to count the
faces. Denote the set of faces of G by F (G).
|V (K4)| = 4, |F (K4)| = 4, |E(K4)| = 6
|V (K2,3)| = 5, |F (K2,3)| = 3, |E(K2,3)| = 6
Recall that for every tree T , |E(T ) = |V (T )| − 1 and notice that in any drawing
|F (T )| = 1.

5: Prove Euler’s Identity. Use induction and that every graph can be created from one vertex by adding leaves
and edges.

Solution: If G has one vertex, zero edges and one face, the identity holds. If G has a
cycle C, then removing one edge from the cycle decreases the number of edges by one
and number of faces by one. If G has a vertex of degree one, then removing the vertex
and its incident edge decreases the number of edges by one and number of vertices by
one. Notice that both cases change both sides of the equation by one.

6: Let G be a plane graph with f faces and e edges, where e ≥ 2. Show that 3f ≤ 2e.
Hint: Counting (edge side)-face incidences should do it.

Solution: Let x be the number of (edge side)-face incidencies. This way, every edge
is incident with two faces (or one face twice if it is a bridge) and we get 2e = x. On
the other hand, the smallest face is a triangle, hence 3f ≤ x. This gives 3f ≤ 2e.

Theorem. If G is a planar graph of order at least 3, then

|E(G)| ≤ 3|V (G)| − 6.

7: Prove Theorem.
Hint: Use Euler and get rid of f using previous question.

Solution: If |E(G)| ≤ 3, the inequality holds. We use the Euler Identity v+f = e+2
and combine it with 3f ≤ 2e. That gives 3v+3f = 3e+6 and 2e+3v ≥ 3e+6, which
is the same as e ≤ 3v − 6. What happens if G is not connected?
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8: Show that K5 is not a planar graph.
Hint: Use Euler’s Formula

Solution: K5 has 10 edges and 5 vertices. So it does not satisfy that 10 ≤ 3 · 5− 6.

9: Show that every planar graph has a vertex of degree at most 5.
Hint: Use Eulers formula and the handshaking lemma.

Solution: Suppose for contradiction thatG has a minimum degree 6. Then 2|E(G)| =∑
v∈V (G) deg v ≥ 6|V (G)|, which contradicts that |E(G)| ≤ 3|V (G)| − 6.

10: Show that if G is a bipartite planar graph with at least one two edges then

|E(G)| ≤ 2|V (G)| − 4.

Solution: Let G be a bipartite plane graph with f faces, v vertices and e edges,

If G is bipartite and not trivial, then the smallest face has at least 4 edges. Hence
4f ≤ 2e.

We use the Euler Identity v + f = e + 2 and combine it with 4f ≤ 2e. That gives
2v + 2f = 2e+ 4 and e+ 2v ≥ 2e+ 4, which is the same as e ≤ 2v − 4.

11: Show that K3,3 is not a planar graph.

Solution: K3,3 has 9 edges and 6 vertices. Hence it does not satisfy e ≤ 2v − 4.

12: Are the following graphs planar? Why?

Solution: No. If they were planar, one could draw K5 or K3,3 as a planar graph.

13: Is Petersen’s graph planar? And the one next to it?

Solution: Petersen contains a subdivision of K3,3. The other one looks basically like
K5. See the minor explanation below.
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Theorem - Kuratowski A graph G is planar if and only if it does not contain a subdivision of K5 or K3,3.

Let G be a graph. A graph H is a minor of G if H can be obtained from G by deleting vertices, deleting edges
and contracting edges.

Theorem A graph G is planar iff it does not contain K5 or K3,3 as a minor.

14: Show that Petersen’s graph has K5 as a minor and also K3,3 as a minor.

15: Are the following graphs planar?
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